0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
public class EqUserDefRec {
public static void main(String[] args) {
int x = args[0].length();
int y = args[1].length();
eq(x, y);
}
public static boolean eq(int x, int y) {
if (x > 0 && y > 0) {
return eq(x-1, y-1);
} else {
return (x == 0 && y == 0);
}
}
}
Generated 15 rules for P and 28 rules for R.
Combined rules. Obtained 1 rules for P and 6 rules for R.
Filtered ground terms:
399_0_eq_LE(x1, x2, x3, x4) → 399_0_eq_LE(x2, x3, x4)
Cond_399_0_eq_LE(x1, x2, x3, x4, x5) → Cond_399_0_eq_LE(x1, x3, x4, x5)
734_0_eq_Return(x1, x2, x3) → 734_0_eq_Return(x2, x3)
697_0_eq_Return(x1) → 697_0_eq_Return
684_0_eq_Return(x1, x2) → 684_0_eq_Return
682_0_eq_Return(x1, x2) → 682_0_eq_Return
Filtered duplicate args:
399_0_eq_LE(x1, x2, x3) → 399_0_eq_LE(x2, x3)
Cond_399_0_eq_LE(x1, x2, x3, x4) → Cond_399_0_eq_LE(x1, x3, x4)
Filtered unneeded arguments:
721_1_eq_InvokeMethod(x1, x2, x3, x4, x5) → 721_1_eq_InvokeMethod(x1, x4, x5)
Combined rules. Obtained 1 rules for P and 6 rules for R.
Finished conversion. Obtained 1 rules for P and 6 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] > 0 && x0[0] > 0 →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((x1[1] - 1 →* x1[0])∧(x0[1] - 1 →* x0[0]))
(1) (&&(>(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 399_0_EQ_LE(x1[0], x0[0])≥NonInfC∧399_0_EQ_LE(x1[0], x0[0])≥COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (>(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ 399_0_EQ_LE(x1[0], x0[0])≥NonInfC∧399_0_EQ_LE(x1[0], x0[0])≥COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(2)bni_20]x0[0] + [(2)bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(2)bni_20]x0[0] + [(2)bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(2)bni_20]x0[0] + [(2)bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [(2)bni_20]x0[0] + [(2)bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(5)bni_20 + (-1)Bound*bni_20] + [(2)bni_20]x0[0] + [(2)bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(8) (COND_399_0_EQ_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_399_0_EQ_LE(TRUE, x1[1], x0[1])≥399_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))∧(UIncreasing(399_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥))
(9) ((UIncreasing(399_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[4 + (-1)bso_23] ≥ 0)
(10) ((UIncreasing(399_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[4 + (-1)bso_23] ≥ 0)
(11) ((UIncreasing(399_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[4 + (-1)bso_23] ≥ 0)
(12) ((UIncreasing(399_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧0 = 0∧0 = 0∧[4 + (-1)bso_23] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(399_0_eq_LE(x1, x2)) = [-1] + [-1]x1
POL(0) = 0
POL(Cond_399_0_eq_LE(x1, x2, x3)) = [-1] + [-1]x2
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(682_0_eq_Return) = [-1]
POL(697_0_eq_Return) = [-1]
POL(721_1_eq_InvokeMethod(x1, x2, x3)) = [-1]
POL(734_0_eq_Return(x1, x2)) = [-1]
POL(684_0_eq_Return) = [-1]
POL(399_0_EQ_LE(x1, x2)) = [1] + [2]x2 + [2]x1
POL(COND_399_0_EQ_LE(x1, x2, x3)) = [1] + [2]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
COND_399_0_EQ_LE(TRUE, x1[1], x0[1]) → 399_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))
399_0_EQ_LE(x1[0], x0[0]) → COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
399_0_EQ_LE(x1[0], x0[0]) → COND_399_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer